デザートワインの試 醸 成 績 オ 1 報 ポート

櫛田忠衛、野々村英夫、小原 嚴

Report on the Experimental production of Dessert wines.

Part 1. Port

Tadae Kushida, Hideo Nonomura and Yuwao Ohara

ボートはボルトガルで造られている「強化酒でDuro河上流の法定区域内の農園に於て製造せられ、Oporto 港より船積されたもの」ということにボルトガルと英国の間で協定されている(Anglo-portuguese treaty, 1916)赤酒と白酒とあるが代表的ボートは赤酒である。また赤白ともマスカット香の有無、壜詰と樽詰の差などによってVintage Port, Crust port, Tawny port などに分類されている。酸造法はその地方特有のブドウを原料とし、赤酒と白酒とで多少違うが、醪の醱酵途中でブランデーを加え酒精分を強化すると共にブドウの甘味を残すようにして造られ、なお製造場を異にする多数の新酒が調合され優良品では壜詰後15~40 年も熟成させる。普通酒精分は20%位、エキス分は10%前後で、酸、タンニンおよびグリセリン、コハク酸などは生ブドウ酒と比較して少ない。

最近ポートはポルトガル以外の国々でも重要な甘味酒として類似の方法で造られているが、それらの多くは本格ポートとはかなり趣を異にした模造品で、かが国でも早くから、いわゆるポートワインが普及しているが、本格ポートは殆んど見当らない状態である。

当研究所では数年来、本格ポートの小規模仕込を実施し、原料ブドウ品種の撰択 および仕込製造方法などについて検討して来たが、末だ貯蔵年数も浅く、結論的の ことは出せないが、今迄の結果を一応取りまとめ報告する。

実 地 仕 込 試 験

北京

ブドウ品種の選択: 当研究所に於ける優良ブドウ酒用品種選択試験の結果を参照し、比較的多量にしかも容易に入手できる品種として次の6品種(第1表)を選択し、別に孤臭のあるものとしてアジロンダックを予定していたが、入手できなかっ

山梨大学嚴醇研究所研究報告第2号

たのでコンコードを供試した。

(第1表)供試原料プドウ (Varieties of the Grapes Used)

	品種	別	収	穫
	Vari	ety	Vir	ntage
\mathbb{M}	Merlot		1X*52	Ichimiya
BQ MI	Black Q Mills	ueen	and the second	Isawa Nakakoma
C	Concord		1X'54	Kitakoma
CD	Chassla	s Dore	1X'52	Ichimiya
K	Koshu		X 52	Katsunuma
KS	Koshu-s	anjaku	X'53	Katsunuma
	Bllg.	還元糖 R.S.a)	総酸 T.A.b)	Bllg/T.A.
M	17.0	14.2 ^g	0.750	
BQ	17.0	14.5	1.120	15.2
MI	20.0	19.0	0.640	31.3
C_{-}	11.4	8.5	0.934	12.2
CD ,	15.0	12.7	0.480	31.3
K	18.0	16.5	0.610	29.6
KS	14.0	11.0	0.620	22.6

- a) Reducing suger as glucose.
 - b) Total acids as tartaric acid.

製造方法: 仕込量はブドウ50 貫前后を用い、大体5 斗樽に貯蔵できるようにした。不良果および果梗を除去して1 石の立桶に入れ、室温で醱酵させ、いずれも SO_2 を使用せず、酒母は予め果汁に培養したブドウ酒酵母(OC-2) を $2\sim3$ %の割合で添加した。酸酵中は時々攪拌してガスの発生を助け、赤酒に於ては色素の抽出に注意し、残糖含量が約10%になった時ブランデーを加えて酸酵を中止させた。なお添加ブランデーは前年度各種の方法で蒸留して斗壜で貯蔵したものである。(酒精分 $62\sim90$ %) 赤酒製造に際しては色素を充分に抽出させるためメルローとブラック・947 以武天々仕込翌日にブランデーを添加し酒精分10%前后とし、ミ

山梨大学醱酵研究所研究報告第2号

ルズおよびコンコードには 簽糖を添加して醱酵期間を 3~6日に調節し、圧搾して 得た汁液にブランデーを添加する方法を行った。甲州三尺(白酒用)は特に糖分が 少なかったので同様に 養糖を加えて醱酵させた。

(第2表)	仕	込 方 法	(Vi	nific	ation	practices
品種別	全量 Total wt.	果 梗 Stems	Stem T.W	s F	果 升 resh uice	Juice T.W.
	kg	kg		%	ľ	ml/kg
\mathbb{M}	169	8.6	5.1		witte)	-
BQ	169	10.9	6.4		#3479	605
TM	106	9.0	8.5		MOT	No.
C	144	5.0	3.4		Essta	the state of the s
CD	230	11.6	5.0		115	500
K	210	10.0	4.8		100	477
KS	206	7.0	3.4		129	625
品種別	補積、酒精 Amelio-	酒 Star	母 ter		午 液 nted	压搾粕 Pomace
	ration			juic	е	
	kg or l		Z.	l	5.	kg
M	19.8 ^a)	3		130		40
BQ	15.4 ^{a)}	3	*	130		39
MT	8 ^b)	2		76		23
C	21 ^b)	5		117		25
CD	610	3		area.		RELEV
K	Non	3		4000		Rigolio V
KS	21 ^b)	, 3	~	WOOSA.		E

a) brandy (1) was added into the must during fermentation.

b) suger (kg) was added.

ブランデー添加後 / ~2 週間で第一回滓引を行い、地下室に貯蔵した。即ち /954年産のもの(M.BQ.CD.K) は赤白共に /954年6月まで5斗樽、以後 / 升壜に分注(CD は樽のまゝ) 貯蔵し、 /953年産ミルズは量がやゝ少ないのといわゆるマスカット否の品種は壜詰がよいと言われているので最初から樽に詰めずに 斗壜で貯蔵しているが、其の他のもの(KS.C) はいずれも現在5斗樽に貯蔵中で年 / ~2 回の滓引を行っている。

天々の試料を常法により分析した結果は第3表の通りで、 唎酒の成績は第4表の通りであった。

(第3表) 試 議 品 の 分 析 結 果

(Analysis of the ports obtained)

							,	
区分	貯蔵		酒精	エキス	還元糖	総酸	揮発酸	
	Age	Bllg.	Alc.	Ex.	R. S.	T. A.	V.A.a)	F.A.b)
	months		vol %	ò	9		per 10	0 m.l.
M	30	3.6	16.2	10.0	7.85	0.419	0.025	
BQ	30	.3.1	16.8	9.4	7.30	0.667	0.035	0.623.
MI	17	6.6	15.9	12.7	10.85	0.373	0.032	0.333
C	5	3.7	17.0	10.1	8.25	0.849	0.025	0.824
CD	30	4.2	158	10.3	8.25	0.338	0.046	0.280
K	29	2.2	17.5	8.7	6.50	0.449	0.078	0.351
KS	17	4.8	17.4	11.1	8.90	0.475	0.031	0.436
	色	詞 lor ^c)					2 7 1	
	D 00	TOL.						
M	R 8.2	5.S						
BO	23.0	17.0						P
1 3201	() . 1)	1 1 5	1					

- Bu 23.0 11.0 MI13.2 7.5 C 9.2 9.9 CD 0.6 0.9 K 0.3 0.4 KS 0.5 0.7
- a) Volatile acids as acetic acid.
- b) Fixed acids as tartaric acid.
- c) in a Lovibond tintometer, with 3/8 inch cell. 山梨大学嚴酵研究所研究報告第2号

(第4表) 网 酒 成 績	(Taste testing	of the ports)
---------------	----------------	---------------

区分	, 順 位	概	評	
	Rating	Remarks		
M	1	香味共良好	good flav	or and taste
BQ	2	濃赤色、酸味やム	deep red,	acidity rather
		強、香よし	pungent,g	ood flavor
MI	- 2	特有の香あり	character	istic aroma,
			Racy	
C	3	孤臭、酸味強	foxy flav	or,Robust
CD	2	や 1 酵母臭あり	some yeas	ty odor
K	1	色香味共よし	good colo	r, flavor and
		Ç	taste	
KS	3	淡白、青くさい	thin body	, green taste.

考察

原料ブドウの品種: 甘味酒用品種としては酸が少なく、pH が高く、糖分の多い品種が良く、米国などではB11g 25~29 ,総酸 0.5~0.65%,pH 4.0 以上でB11g 総酸が 38 以上のものが良いとされているが、供試品種はいずれもその値は低く 12.2~31.3 の間にあった。

酒質を綜合的にみて赤酒用としては4品種中メルローが最良でコンコード が最も劣った。ミルズは酸が少なく語分が多くて分析結果としては優れた品種であるが、特有の香りを有し人によって好き嫌いがあるようである。ブラッククインも 語分比較的多く、色も濃赤色で有望な品種であるが、酸がやム多過ぎるのが欠点である。白酒用として供試した3品種の綜合的順位は甲州、甲州三尺、シャスラードーレの順で、シャスラードーレは組成的には最も理想的でありながら酒として成績の劣ったのは、仕込翌夏に再酸酵を起し、酵母臭がついた為と考えられる。

仕込方法: 赤酒においては香気を増加させ、色素を抽出させるために、圧搾 前に可成酸酵させる必要があるが、原料ブドウの糖分が少ないので、糖分を10% も残すには殆んど酸酵させる余地がない。従って本実験では当初に一部ブランデー 又は 蔗糖を添加し、所要程度に酸酵させてから更にブランデーを添加する方法を試 みた処、成績は予想のように可成良好であった。即ち赤ブドウ酒における色素の抽造が 出は非常によく、酸酵は長引いてブランデー添加時期の決定は容易になった。なお 添加した英語はブランデーを加える頃には殆んど全部転化糖に変化していることが 認められ、甘味の質も生ブドウ酒に蔗糖を加えた場合より恐らく良好であると思われる。

プランデー添加: 添加するブランデーの質は直接生成酒の品質を左右するもので、米目ではエキス分を下げないように出来る丈高濃度のもの(90% neut=ral spirit)を添加した方がよいと言われているが、ボルトガルでは酒精分の低い殆んど精製されていないブランデー(76~78%) が用いられているようである。今回はブランデーの品質をで充分吟味はされなかったが、各種の方法で蒸溜し約1年間貯蔵したものを使用した処、各々の添加ブランデーにあった夫々特有の香気は貯蔵中に次第に減少する事を認めた。なお再酸酵を起したシャスラードーレは補糖せず残糖を10%程度としてブランデーを加えた為に酸酵は殆んど行われず、且つブランデー添加後の酒精分が比較的低かったことが再酸酵の主原因をなしたものと考えられる。

達 引: 第1回滓引は出来る限り早く行い、酵母、蛋白質およびガム質などの沈澱を早く分離することが、香味をよくし熟成を早めるといわれているので、ブランデー添加後1~2週間で行ったが、もっと早く度々行うか濾過しても良いと思われた。

試験品は欧米のものに比し一般に酒精、糖分共にや1少なく酸度のや1多いもの、となった。赤酒の中ではミルズは特に糖分多く酒精分は少ないが、酸の少ないものとなった。ホ酒の中ではミルズは特に糖分多く酒精分は少ないが、酸の少ないものとなった。コンコードは貯蔵期間が短かく、充分酒石が沈澱していないので酸度は一番多いが、貯蔵中質分幾分減少する筈である。白酒では甲州が糖分少なく幾分甘味が足りないようであるが、着色も少なく、香味は甚だよかった。但し、揮発酸が他のものに比して多いのは原料ブドウが収穫後日時がたって、幾分傷んでいた1めであろう。

要旨

赤酒の原料としてメルロー、ブラッククイーン、ミルズ、コンコードを、白酒の原料としてシャスラードーレ、甲州および甲州三尺の7品種を用い本格ポートを試験した結果、メルロー及び甲州種が最もよい成績であった。

原料果に糖分が少ないので或る程度醱酵させるためには初め補稽する必要があるが、赤酒では色素を抽出するため、予めブランデーの一部を果醪に加えることが有効である。

終りに実験に協力された斎藤義見、雨宮義人両君並に研究所員各位に深謝する。

- 1) JOSLYN, M.A. & AMERINE, M.A. : Commercial Production of Dessert Wines. California Agr. Exp. Sta. Bull. 651, 1-186 (1941)
- 2) cruess,w.v.: The Principles and Practice of Wine Making. 2nd Ed. The Avi Publ. Co. Inc., New York (1947)