(J. Inst. Enol. Vitic. Yamanashi Univ. 18 15~25 1983)

酵母 Lipomyces starkeyi の生育条件と脂質脂肪酸組成の関係

兎束 保之・李 福臨・長沼 孝文・田中健太郎

Relationship between Cultural Conditions and Fatty Acid Composition of Lipids in the Yeast Lipomyces starkeyi

Yasuyuki Uzuka, Fwu-Ling Lee, Takafumi Naganuma, and Kentaro Tanaka

Department of Fermentation Technology, Faculty of Engineering Yamanashi University, Kofu 400

The study was attempted to change the fatty acid composition of triglyceride accumulated in *Lipomyces starkeyi* IAM 4753 by varying cellular growth conditions such as concentrations of medium constituents, initial pH values, degree of airation, or growth temperature. Cells were harvested at the early stationary phase of growth and fatty acid compositions of the total lipids (TL) and triglyceride (TG) fractions were analyzed by gas-liquid chromatography.

Major fatty acids of both TL and TG were palmitic acid and oleic acid throughout experiments. Linoleic acid content in TL increased considerably in the cases that the cells were grown under one tenth of standard concentration of potassium ion or under a hundred times as high as that of chloride ion. When cells were grown at 15°C or 20°C, linolenic acid was deteted in TL (but not in TG) and linoleic acid content in TG increased a little.

These data suggest that, at least in the strain, there is no effective physiogical factor which can enrich poly-unsaturated fatty acid content in TG.

ľ

緒 言

油脂酵母(fat yeasts)と呼ばれる一群の酵母は,老化に近づいた細胞内に大量のトリグリセリドを蓄積する性質がある.¹⁾ 第一次及び第二次世界大戦の末期に食糧危機に直面したドイツでは,油脂酵母が生産するトリグリセリドを,食糧あるいは飼料として利用する試みがなされたが,実用化には至らなかった.²⁾ その後1970年代前半に地球規模で起った異常気象に伴う食糧不足問題の解決策のひとつとして,これらの酵母を使って農産廃棄物を有効利用する道が討議された.³⁾

現在,日本をはじめとする先進国の食用油脂に対する 関心は,すでに充分に満たされた量的問題よりも,健 康管理と深い関りのある構成脂肪酸組成へと移っている.

一方、酵母をはじめとする微生物は、その与えられた環境に適応して生育するときに、二次代謝物のみならず、一次代謝物の組成をも変えてゆくところに特長がある。⁴⁾ したがって油脂酵母でも、特殊な生育環境におかれると生産・蓄積するトリグリセリドの脂肪酸組成が予期しなかった方向へ変化する可能性がある。しかしながら、実際に培養条件をかえたときに油脂酵母が

Table	1.	Composition	of	media	used	in	this	study.

	Semi-defined medium	Defined medium
Glucose	30.0 g/l	30.0 g/l
$(NH_4)_2SO_4$	3. 5	5. 3
$\mathrm{KH_{2}PO_{4}}$	1. 0	1. 1
MgSO ₄ . 7 H ₂ O	0. 5	0.5
NaCl	0. 1	0. 1
CaCl ₂ · 2 H ₂ O	0. 1	0. 1
Fe**	_	$500 \mu_{\rm g}/1$
Z n**	_	75
Mn**	<u>—</u>	22
Cu**	_	7. 0
$Na_2MoO_4 \cdot 2H_2O$	_	3. 2
KI	_	13.0
$\mathrm{H_{3}BO_{3}}$		42.9
Biotin		0. 2
Yeast extract	1. 0	_

^{**} Standard solutions for atomic absorption analysis were used.

生産するトリグリセリドの脂肪酸組成が, どのような変化を与えられるかを充分に分析検討した報告はない.

本報では油脂酵母の代表菌株 Lipomyces starkeyi IAM4753 を,温度,通気量,培地組成をさまざまに変化させた条件で培養し,生育の定常期初期に蓄積されている菌体総脂質と,その主成分となっているトリグリセリドの脂肪酸組成を比較検討することを目的としている.

実 験 方 法

- 1. 使用菌株 山梨大学醗酵化学研究施設の保存 菌株 *Lipomyces starkeyi* IAM4753.⁵⁾
- 2. 培養方法 すでに報告した方法 5)にしたがって酵母エキスを含んだ半合成培地、組成の明らかな標準培地へと順次移植した.菌濃度が対数増殖後期に相当する $\mathrm{E}_{660\,\mathrm{nm}}^{\mathrm{lcm}}=1.0$ まで増殖したときに集菌洗浄し、種菌として本培養培地に菌濃度 $\mathrm{E}_{660\,\mathrm{nm}}^{\mathrm{lcm}}=0.01$ になるように植えついだ.使用した培地は通常 $500\,\mathrm{ml}$ 容坂ロフラスコに後述する組成(Table 1)を持った液体培地 $100\,\mathrm{ml}$ を分注して綿栓後、 $115\,\mathrm{C}$ 、 $15\,\mathrm{C}$ オートクレープ殺菌したものを用いた.菌体を接種した培地は特に断わらない限り $30\,\mathrm{C}$ で、振巾 $7\,\mathrm{cm}$ 、 $120\,\mathrm{ml}$)のの往復

振盪して通気培養を行った. 実験で使用した半合成培 地, 標準培地の組成を Table 1 に示した. 培地を 構成する化合物を全て標準量だけ使用したものを標準 培地とし, 濃度試験の対象とする元素を含む化合物を, それぞれ単独に多く加えたり、あるいは少量だけに控 えて、試験培地を作製した. 試験対象とするイオン濃 度を増減させると、そのイオンと塩を構成していた対 イオン濃度も増減するおそれがある. 培地を構成する 多量イオンの濃度試験では、予め濃度影響のないこと がわかっている対イオンの塩を適宜使用して、目的だ けを達成した. 例えば、カリウム添加量を増大させる ときは, 硫酸カリウムを使い, また減少させるときは 第一リン酸ナトリウムでリン酸を補った. 使用した試 薬は全て和光純薬特級である. 培地へ添加する鉄、銅, マンガン, 亜鉛イオンは原子吸光分析用市販標準液を 使用した.

添加量を3%に固定して、入手しやすい数種の炭素源を用いて試験した。窒素源の種類についても同様に行った。通気量試験では、500ml容坂口フラスコに入れる培地量を25mlから200mlに変化させたり、綿栓をビニールフィルムで被覆したり、綿栓の代りに通気用ガラス管をつけたゴム栓をして、除菌空気を強制通気した。培地の初発 pH は標準培地を含めて通常は

Table 2. Fatty acid compositions of total lipid and trigryceride of *L. starkeyi* grown in different concentration of major cations.

Element	Amount g/1	Lipid analyzed	C _{14:0}	C _{16:0}	Fatty acid	d comosition C ₁₈ : 0	on (%) C _{18:1}	C _{18: 2}	Fotal unsa fatty ac	
	0. 032	ΤL	0. 1	32. 3	2, 6	1. 8	43. 4	18. 9	64. 9	
(as K+)	0.002	TO		42. 9	3.0	3.0	45.7	4.8	04.0	53. 5
(45 11)	0. 105	TL	0.1	30.8	5. 8	1. 5	54. 5	7. 1	67.5	00.0
	0.100	ТС		41. 2	4.0	0.8	51. 2	2. 5	01.0	57.3
	0.316 *	TL	0. 1	27. 7	3. 2	2. 6	59. 0	7. 2	69.6	01.0
	0.010	TO		39. 0	1.5	2. 2	54.9	2. 2	00.0	58. 6
	1.56	TL	0. 1	28. 0	2. 6	3. 7	58.8	6. 6	68. 2	00.0
		TO		37. 4	2. 3	3. 6	54. 4	1.8		58. 6
N	0. 11	TL	0. 1	36. 5	1. 9	3. 6	53. 9	4. 0	59.8	
(as NH ₄)		TO	0.3	45. 9	1.6	5. 5	44. 5	2. 1		48. 2
	0.37	TL	0.1	29. 9	1.8	2.9	59. 0	6.2	67.1	
		TO	0.2	34. 2	2. 4	2. 9	58. 9	1. 2		62.5
	1.12 *	TL	0.2	26.0	2. 5	1.7	63.0	6.7	72.1	
		TO	0.2	33. 4	2. 2	3. 2	59. 4	1. 2		63.0
	3. 36	TL	0.2	26.9	3. 9	1.8	59. 4	7.8	71.2	
		TO	0.3	32. 1	4.0	2. 0	56. 2	5. 3		65. 5
М д	0. 001	TL	0. 2	28. 8	2. 6	3. 4	59. 7	5. 3	67. 6	
$(as Mg^{2+})$		TO	6 0.4	36. 0	2.6	3. 6	54. 4	3. 0		60.0
	0.049 *	TL	0.2	28.0	2. 6	3. 1	59. 4	6. 5	68. 6	
		Т (0.3	34. 4	2. 6	3. 1	55. 4	4. 0		62. 0
Na	0.008	TL	0. 2	27.9	3. 3	2. 3	60. 0	7. 3	69. 7	
(as Na ⁺)		TO		39. 1	2.0	2.1	52. 2	4. 3		58. 4
	0.039 *	TL	0. 1	25. 5	3.9	1.1	64. 2	7.8	76. 2	
		TO	G 0. 2	40. 0	2. 2	1.9	53.8	5. 0		60.9
	0.197	TL	0. 1	21. 1	4.4	0.8	65. 3	8. 1	77. 9	
		TO		31.8	2. 9	1.6	57.8	5. 6		66. 3
	0.390	TL	0. 1	25. 9	3. 4	1.9	61.3	7.3	72.0	
		Т(0.6	44. 2	1.8	3. 2	46. 5	3.5		51.8
Ca	0.000	TL	0. 2	31.5	2. 0	3. 4	56. 6	6. 4	69. 9	
(as Ca ²⁺)		TO		36. 9	2.4	4. 1	54. 7	1.3		58. 4
	0.005	TL	0. 2	30. 7	2.8	3. 7	55'. 5	6. 9	65. 4	
		TO		34. 6	3. 1	3.6	57.8	0.4		61. 3
	0.027 *	ΤL	0. 2	29.8	3. 3	3. 3	56. 5	6. 7	66. 7	
		TO		35. 7	3. 1	2. 9	54. 0	3.8		60.9
	0.14	TL	0. 2	29. 2	4. 1	2. 3	58. 5	5. 5	68. 2	1500
		TO		33. 3	4. 4	1. 9	59. 1	0.8		64. 4
	0.27	TL	0. 2	28. 1	4. 3	2. 1	59. 9	5. 2	69. 6	
		TO		32. 6	4.5	2. 0	59. 9	0. 4	200	64.7
	1.09	TL	0. 2	28. 6	4. 4	2. 0	59. 6	5. 2	69. 2	
		TO	G 0.5	32. 4	4.9	2. 1	59. 1	0.8		64.8

Cells were harvested by centrifugation at the early stationary phase of growth, and total lipids of the cells were extracted by shaking the cells with glass beads in the mixture of chloroform-methanol (2:1, v/v). Triglyceride fractions were separated from the total lipids by thin-layer chromatography with the solvent system of petroleum ether-ether-acetic acid (80:20:1, v/v/v). Methylation of fatty acids was carried out by heating lipids with HCl-methanol at 90°C, and was completed by the addition of diazomethane-ether. The methylated fatty acids were quantitatively anlyzed by gas-liquid chromatography. Values quoted are each the mean of three independent analyses.

Table 3. Fatty acid compositions of total lipid and triglyceride of *L. starkeyi* grown in different concentration of minor cations

Element	Amount	Lipid				_	on (%)		Total ur	
	g/1	analyze	d C ₁₄ : 0	C _{16:0} C	2 16: 1	C _{18:0}	C _{18:1} C	18:2	fatty	acid
Fe	0	TL	0. 2	38.0	2.0	6.8	48. 6	4. 4	55. 0	
(as Fe^{3+})		T	G 0.3	48. 1	1.5	5.3	43.5	1.4		46.3
	40	ΤL	0.2	34.9	2. 1	5.3	53.6	3.8	59.5	
		T			1.7	5. 2	50.0	1.5		53. 1
	500 *	ΤL	0. 1	29.3	3.3	3.1	56.9	7.0	67.2	*
		T			2.4	2.9	53. 3	3.8		59. 4
	5,000	ΤL	0. 1	31.0	2.3	3.4	56. 4	6.8	65. 5	
		T			1.8	3.5	51. 9	4.0		57.6
	50,000	TL	0. 2	31.8	2.5	3.4	54.8	7.3	64.8	
		Т	G 0.4	37. 6	2. 2	4. 2	50. 0	5. 5		57.7
Zn	0	ΤL	0. 2	27.7	8. 2	0.8	55. 7	7. 0	70.8	į.
(as Zn ²⁺)		T	G 0.3	30.6	8.5	1.5	52.8	5.7		67.0
	25	TL	0. 1	31.7	5.8	1.5	54.9	5.8	66.5	
		T	G 0.7	51.5	3.2	1.8	39.6	2.9		45.7
	75 *	TL	0. 1	30.6	3.0	3. 1	56.6	6. 5	66.0	
		T	G 0.5	49.3	1.5	3.6	40.9	4.2		46.6
	750	TL	0. 2	29.1	2.0	3.1	56. 2	9.2	67.4	
		T	G 1.1	56. 3	0.6	7.0	32. 1	2.7		35. 3
	7,500	TL	0.2	32.7	1.3	4.4	53. 1	8. 1	62.5	
		Т	G 0.4	40.1	1. 2	5. 0	46.6	6. 1		53. 9
Mn	2. 2	ΤL	0. 2	34. 9	1. 5	5. 4	44. 6	13. 1	59. 2	
(as Mn ²⁺)	T	G 0.4	46.0	1.3	6.8	38.9	6.6		46.8
	22 *	ΤL	0. 1	31.0	2.7	3.5	55.6	6.8	65.0	
		T	G 0.3	35. 5	2.4	2.5	50.2	5.0		57.6
	220	ΤL	0. 2.	30.8	3.4	2.7	55. 4	7.4	66. 2	
		T	G 0.2	39. 6	2.6	2.5	49.2	5.8		57.5
	2, 200	TL	0. 2	29.7	3.4	2.6	56.6	7.4	67.3	
		Т	G 0.3	45. 4	2. 2	1.9	45. 6	4.6		52. 3
Cu	0	ΤL	0. 1	27.8	3. 2	1. 9	60. 1	6. 7	70. 2	11 4
(as Cu ²⁺)		T	G 0.7	48. 2	1.4	2.4	44. 1	3.0		48.5
	7 *	TL	0.2	27.2	3.7	1.4	60.9	6.6	71.3	
		T	G 0.3		1.8	2.0	45.2	3.3		50.3

5.3とし, それより低く, あるいは高くするときは 2N HCl, 2N KOH で調整した.

3. 脂質の抽出及び分析 培養した菌体はいずれ も生育の定常期初期に遠心集菌し、既報⁷⁾にしたがっ て菌体総脂質 (Total lipids; TL) を抽出した.抽出脂質のクロロホルム溶液をガラス板を支持体としたシリカゲル薄層上に横へ直線状に塗布し,石油エーテル:エチルエーテル:酢酸(80:20:1)で展開した.風乾後,ヨウ素蒸気でトリグリセリド(TG)画

Table 4. Fatty acid compositions of total lipid and triglyceride of *L. starkeyi* grown in different concentration of major anions.

Element	Amount									Total un	
	g/1	analy	zed	C ₁₄ : 0	C ₁₆ : 0 C	16: 1	C ₁₈ : 0	C _{18:1}	C ₁₈ : 2	fatty	acid
S	0.04	ΤL		0. 2	32.8	1.9	4. 0	53. 9	7. 1	63. 1	
$(as SO_4^{2-})$			TG	0.3	38.4	1.8	4.0	54. 4	0.9		57.2
(as so ₄ ,	1.28 *	ΤL		0.2	26.0	2.5	1.7	63.0	6.7	72.1	
			TG	0.2	33.4	2.2	3. 2	59. 4	1.2		63.0
	6.08	ΤL		0.1	24.8	1.4	5. 3	59.3	8.9	69.8	
			ΤG	0.3	33.6	3. 3	2.7	59. 1	1. 0		63. 4
P	0.025	ΤL		0. 1	31. 1	2. 2	3. 9	57. 5	5. 2	64. 9	
$(as PO_4^{3-})$			ΤG	0.2	34. 4	2.4	2. 0	59. 2	1.6		63.2
4 /	0.084	ΤL		0.1	26.9	3.1	1.5	60.7	7.5	71.5	
			ΤG	0.2		1.9		53. 1	3.6		58. 3
	0.25 *	ΤL		0.1	30. 3	3.1	2.9	56.8	6.7	66.7	
			ΤG	0.2	35.7	2.4	1.9	56. 3	3.5		62. 2
	1.25	TL		0.1	27.9	4.5	2.0	58.0	7.4	69.9	
			ΤG	0.3	34. 1	3. 9	1. 9	57.7	1. 9		63. 4
	0.009	ΤL		0. 1	31. 4	2. 7	3. 7	53. 9	8. 1	64. 8	
(as Cl-)			ΤG	0.2	38.9	2.0	1.6	54.0	3. 1		59. 2
,	0.09 *	ΤL		0.1	32. 1	2.4	3.3	53.8	8.0	64.4	
			ΤG	0.3		2.4	2.9	53.3	3.8		59. 4
	0.9	ΤL		0.1	30.6	2.5	3.2	55. 4	8. 1	66. 2	
			TG	0.2	37.7	1.9	1.8	55. 5	2.8		60.3
	9.0	ΤL		0.1	38.8	2.7	3.4	32. 5	22.3	57.6	
			TG	0.7	49. 2	2.7		35. 6	5. 7		44.0

分を検出してシリカゲルを削り、クロロホルム:メタノール(2:1)で抽出・単離した.溶媒を除去した総脂質及びトリグリセリド画分を塩酸メタノール、ジアゾメタン法併用でメチルエステル化した8)メチルエステル化した脂肪酸の分析は、日立 K-53型ガスクロマトグラフで、chromosorb W AW-DMCS ($60\sim80$ mesh)を担体、DEGSを液相(20%)として充填したステンレススチールカラム(2 m×3 mm)を用いて、200°C、定温で行った.この方法では、保持時間のちがいで C_8 から C_{20} までの脂肪酸メチルエステルを定性分析でき、記録紙にあらわれた面積比から定量(存在比率)を行った.菌体脂質から検出したメチルエステル型の脂肪酸は、ミリスチン酸($C_{14:0}$)、パルミチン酸($C_{16:0}$)、パルミトレン酸($C_{16:1}$)、ステアリン酸($C_{18:0}$)、オレイン酸

 $(C_{18:1}$), リノール酸 $(C_{18:2}$), リノレン酸 $(C_{18:3})$ だけであった。

実験結果及び考察

1回の培養に使用できるフラスコの数に制限があるので、全体を22の組に分けて培養を行った.ひと組の実験毎に対照区として標準培地を使い、標準条件で培養した菌体をおいた. Table 2 から Table 9 までに示した実験結果のうち、組分けした区切りを太線で示し、その中の対照区に*印を付した.各 Table中の脂肪酸組成の比較は、実験した組のなかでするのが原則である。全22組の実験でそれぞれ設置した対照区の分析値を整理して、脂肪酸組成の平均値と標準偏差を求めたのがTable 10 である. Table 10 の平均値に偏差値を加えた数よりも分析値が大きくなったも

Table 5. Fatty acid compositions of total lipid and triglyceride of *L. starkeyi* grown in different concention of minor anions.

Element	Amount	Li	pid	-	Fatty	acid o	composi	tion (%)		Total u	nsaturated
	g/1	ana!	lyzed							fatty	
Mo	0.13	ΤL		0.1	24.5	3.5	1.4	61.8	8. 5	74.0	
(as			ΤG	0.1	42.0	1.4	1.8	52. 6	2.0		56.0
MoO_4^{2-})	1.3 *	ΤL		0.1	29. 1	4. 1	2.0	57. 5	7.0	68.8	
			ΤG	0.2	39.0	2.4	1.7	54. 5	2. 1		59, 0
*	13.0	ΤL		0.1	24.8	4. 1	1.0	61.5	8. 2	74. 1	* .
			ΤG	0.2	37. 1	2. 3	1. 7	54. 4	4. 2		60. 9
I	0.0	ΤL	ığ	0. 1	29.8	2. 4	2. 5	58. 7	6. 3	67. 6	
(as			ΤG	0.2	37.1			57. 4	0.6		60.2
Ī)	1.0	ΤL		0.1	29.5	3.0	2.7	57.5	7. 1	67.8	
			ΤG	0.1					3.4		60.3
	10 *	ΤL		0.1	29. 1	3. 1	3. 1	57.4	7.0	67.7	
			ΤG	0.1					1.3		61.9
	100	ΤL		0.1	29. 2	2.8				68.0	
			ΤG	0.1				54. 3	2.5		58. 6
	1,000	TL		0.1			2.5		6. 1	69.7	
			ΤG	0.1		1.4		52.8			57. 0
В	0.75	ΤL		0. 2	31. 7	3. 2	2. 3	55. 8	6. 5	65. 7	3
(as			ΤG	0.2							59. 4
BO ₃ -)	7.5 *	ΤL		0.1	29.0	2. 9	2.8	57.8	7. 1	68.0	
0			ΤG	0.2	38.4						59. 5
	75	ΤL		0.1	28.3					69. 2	
			ΤG	0.1							60. 1

の,あるいは平均値から偏差値を差し引いたよりも分析値が小さくなったものについては注目し,特にその差が大きいものについては,組をこえて比較する意味があるとして,考察の対象とした.

脂質脂肪酸組成に及ぼす培地中の多量陽イオン濃度の影響 Table 2 は培地を構成する多量陽イオンの濃度を変化させると、脂質構成脂肪酸の組成にどのような影響がでるかを調べた結果である。カリウムイオン濃度を標準の1/10にすると、全脂質(TL)の $C_{18:2}$ の組成比が増大した。しかし、トリグリセリド(TG)画分の脂肪酸組成では $C_{18:2}$ 含量に大きな変化がなかった。油脂を蓄積しない通常の酵母では、菌体を構成する全脂質は乾燥菌体重量の10%以下で、その大部分は膜系にあり、それを構成する極性脂質と中性脂質を加えても、膜乾物量の40%程度といわれる.9?

培地中のマグネシウム,ナトリウム,カルシウム等のイオン濃度を変化させても、TL. TG の脂肪

Table 6. Fatty acid compositions of total lipid and triglyceride of *L. starkeyi* grow in different glucose concentration, different carbon source, and different nitrogen source.

Carbon	Amount	Lip	oid		Fatty	acid co	omposit:	ion (%)		Total ur	nsaturated
source	g /1	anal	yzed	C _{14:0}	C _{16:0}	C _{16:1}	C _{18: 0}	C _{18:1}	C _{18: 2}	fatty	acid
Glucose	10	ΤL		0.2	32. 9	3. 5	2. 3	43. 5	17. 2	64. 5	
A MANAGEMENT OF MANAGEMENT OF THE PARTY OF T			ΤG	0.5	39. 0	3.4	2.5	42.4	11.6		57.3
	20	ΤL		0.2	33.9	4.2	2.4	48. 1	10.3	63. 1	
			TG	0.4	35. 6	4.8	1.9	49. 2	7.0		61.0
	30 *	ΤL		0.3	35. 6	3.6	2.8	48.9	8. 2	60.9	
			TG	0.5	36.7	4.0	3.3	49.1	5. 9		59. 0
	40	ΤL		0.4	36. 5	2. 2	4.6	47.8	7.8	58. 2	
			ΤG	0.6	40. 4	3.8	3.8	50.0	0.7		54. 5
	50	ΤL		0.4	37. 2	3. 3	4.0	46. 3	7.9	57.7	
			TG	0. 6	39. 7	3. 4	4.5	46. 6	4.5		54. 5
	100	ΤL		0.3	36. 0	3. 4	4. 4	48. 1	7. 2	58. 9	
			ΤG	0.6	46. 7	2. 5	5. 6	39. 6	4.4		46. 5
Glucose	30*	ΤL		0.3	35. 6	3. 6	2. 8	48. 9	8. 2	60. 9	_
			TG	0.5	36.7	4.0	3.3	49.1	5. 9		59.0
Xylose	30	ΤL		0.2	35.8	2.9	4.2	50.8	5. 9	59.7	
			ΤG	0.3	37.1	3. 1	3.5	51.8	4.1		59.0
Maltose	30	TL		0.1	33. 2	3.5	3.4	51.5	8.2	63.2	
			ΤG	0.3	32.6	4. 1	2.2	54.6	5. 9		64.6
Starch	30	ΤL		0.2	33.0	3.2	3.7	49.3	10.3	63.0	
			ΤG	0.3	34.8	3.6	2. 1	54. 7	4. 2		62. 5
Nitrogen			N .								
source											
$(NH_4)_2SO_4$	5.3 *	TL		0.2	30.3	3.5	3. 1	56. 4	6.3	66. 2	
			ΤG	0.6	36.8	3.6	3.2	54.9	0.7		59. 2
NH ₄ Cl	5.3	ΤL		0.2	30.3	2.2	3.4	57.6	6.3	66. 1	
			ΤG	0.4	34.0	3.0	3.7	58.0	0.7		61.8
$(NH_4)_2$ HPO	5.3	ΤL		0.2	29.3	5. 5	1.3	56. 1	7.3	68. 9	
3.00			ΤG	0.3	34.3	5. 3	1.7	57.7	0.5		63.4
Urea	5.3	ΤL		0.3	30.3	6.9	1.5	54.8	5.8	67. 4	
			TG	0.4	33.6	7. 6	1. 2	55. 1	1.6		64. 4

組成に変化はなかった.

培地の中の微量陽イオンの濃度が脂質脂肪酸組成に及ぼす影響 Table 3 に微量陽イオンの濃度を増減したときの菌体脂肪酸組成を示した. 鉄イオンが減少すると, TL と TG 中の $C_{16:0}$ と $C_{18:0}$

が増大し、 $C_{18:1}$ 、 $C_{18:2}$ が減少した.培地中のグルコース濃度は3%で、ここに使用したグルコース中には不純物として鉄が0.0005%を上限として含んでいる.仮に実験に使用したグルコースでは0.0001%としても、培地 11 中には $30\mu_g$ を与えたことに相当する.したがって、培地作製時に改めて鉄添加をしなかった系で

Table 7. Fatty acid compositions of total lipid and triglyceride of *L. starkeyi* grown under different initial pH value.

Initial pH	Lipid analyzed			omposition (%) C ₁₈ : 0 C ₁₈ : 1	C _{18: 2}	Total unsaturated fatty acid
1. 9	ΤL	0.1 3	32. 3 2. 1	3.6 53.0	8. 7	63.7
	ΤG	0.5	38. 4 2. 3	5.4 50.8	2.4	55. 6
3.8	ΤL	0.1. 2	29. 5 2. 4	3. 4 58. 6	6.0	67. 0
	ΤG	0.1	32.9 2.1	2. 3 58. 8	3.6	64. 5
5.3 *	ΤL	0.3 2	29.5 2.6	2. 7 58. 9	6.0	67. 5
	ΤG	0.2	32.6 2.4	2.4 58.1	4.3	64.8
6. 0	ΤL	0.1 2	28.9 2.3	3.0 57.0	8.6	67.8
	ΤG	0.4	32. 9 3. 0	2.6 56.7	4. 4	64. 1

も、培地の多量成分から不純物として由来する40μg (実験として加えた最低値)前後の鉄が意図せずに混入していても不思議ではない。また鉄イオンの添加量をより厳密に制限する実験を計画しても実現できない。鉄を与えなかった系で不飽和脂肪酸が減少したことは、鉄が酸化的不飽和化反応に関与している¹²⁾ことを暗示していると考えられる。

亜鉛イオン濃度が減少すると,TL,TG 中の $C_{16;1}$ が増大したが $C_{18;1}$ や $C_{18;2}$ は増大しなかった.脂肪酸の酸化的不飽和化過程が C_{16} と C_{18} では異る可能性がある.

マンガンイオンを減少させると TL 中の $C_{18:1}$ が減少して $C_{18:2}$ が増大し,TG の $C_{16:0}$ が増大して $C_{18:1}$ が減少する.TL と TG の脂肪酸組成の変化に統一性がないことから,極性脂質と蓄積脂質の脂肪酸組成が,それぞれ少くとも一部は独立して制御されていると推定される.

培地中の陰イオンの濃度が脂質脂肪酸組成に及ぼす影響 硫酸イオンとして加えた硫黄、リン酸イオンとして加えた硫サ、リン酸イオンとして加えたリンの培地中濃度が変化しても、TL、TG の脂肪酸組成に注目すべき変動はなかった(Table 4). 塩素イオンが通常濃度の100倍になると、TL 中の $C_{18:1}$ が減少して $C_{18:2}$ が増大した。最大添加量の総イオン濃度は、グルコースを除いた他の培地構成化合物イオンの標準濃度の約2倍に相当し、培地の浸透圧が変化する。耐塩性微生物では培地中の食塩濃度が増減すると膜構成脂肪酸組成が変化するものがある。酵母では $Saccharomyces\ rouxii$ では変化が報告されているが、Torulopsis 属酵母で

は変化がないといわれる.⁽³⁾ L. starkeyi は変化があらわれるものに属すると考えられる.

塩素以外の陰イオンの濃度を増減させても脂肪酸組成に大きな変化はなかった(Table 4.5).

炭素源、窒素源の濃度と種類 Table 6 には培地 の炭素源の添加量をかえたり、炭素源と窒素源の種類 を変化させた時の脂肪酸組成を示した. 窒素源を硫安 5.3g/1に固定して, グルコース濃度を10g/1から 順次ふやすと、TL, TG 中の C_{18:2} が減少傾向 を示した. グルコースの少い培地では菌体中の脂肪球 の発達が悪く、TL 中の TG 含量が低い. した がって TL 中の脂肪酸組成は膜脂質のそれを、よ り大きく反影して、C_{18:2} が増大したと推定される. また,グルコースの少い培地では、生育の対数期につ づく減衰期が短く、定常期にすぐにはいる14) このと きの TG 中の脂肪酸に C_{18:2} が多いことは, 蓄 積が開始されたばかりの TG の脂肪酸組成と,継 続的に蓄積された TG の脂肪酸組成の間に相違が あることを示している.

炭素源の種類,窒素源の種類を変化させても,脂肪酸組成には大きな変化はなかった.

培地の初発 pH 初発 pH が1.9から6.0ま での間で試験したが、脂肪酸組成に変化がなかった (Table 7).

通気条件 500ml容フラスコに入れる培地量を ふやすにつれて、TG 中の $C_{16:0}$ が増大し、 $C_{18:1}$ が減少した。また綿栓部分をビニール膜で覆って通気

Table 8. Fatty acid compositions of total lipid and triglyceride of *L. starkeyi* grown under different airating condition.

Volume of mediu (ml/flask		Lipi analy		C ₁₄ : 0	17.		Total unsaturated fatty acid				
25	Cotton	ΤL		0. 1	33. 4	2. 1	3. 2	53. 9	7. 3	63. 3	14
		,	ΤG	0.3	37.6	2.2	2.9	56.6	0.3		59. 1
50	Cotton	ΤL		0.1	32. 5	3. 1	2.8	55.0	6.5	64.6	
			ΤG	0.4	42.8	2.4	2. 1	47.7	4.5		54.6
100*	Cotton	ΤL		0.1	25. 3	3. 1	2.4	61.8	7.2	72. 2	
		,	ΤG	0.8	49.2	1.7	4.1	41.3	2.7		45.7
200	Cotton	ΤL		0.1	27.7	3. 5	2.8	59.8	5. 9	69. 4	
		,	ΤG	0.9	60. 5	0. 1	5. 4	30. 7	1.3		32. 9
100	Cotton	ΤL		0. 4	38. 4	2. 4	9. 0	38. 3	11. 3	52. 0	
	covered	,	ΤG	0.6	42.8	1.9	12. 2	34.6	6. 4		42.8
	by vinyl film										
100*	Cotton	ΤL		0.2	30. 5	3.3	3. 2	56.6	6. 2	66. 1	
			ΤG	0.3	35. 5	2. 6	3.9	54. 1	3. 3		60.1
100	Rubber	ΤL		0.1	31.6	3.8	2.5	55. 5	6.3	65.6	
	force- fully airated	167 /	ΤG	0. 2	36. 7	4. 1	1. 7	52. 4	4.7		61. 2

Table 9. Fatty acid compositions of total lipid and triglyceride of L. starkeyi grown under different growth temperture.

Temperature	Lipi	d		Fatty	acid c	omposit	ion (%)			Total unsaturated
$^{\circ}\! \mathbb{C}$	analy	zed	C ₁₄ : 0	C ₁₆ : 0	C ₁₆ : 1	C ₁₈ : 0	C _{18: 1}	C _{18: 2}	C ₁₈ : 3	fatty acid
15	ΤL		< 0.1	25.3	4.3	1.6	45.6	19.5	3.8	73. 2
		ΤG	0.2	30.0	4.3	3. 1	56.3	6.1	< 0.1	66.7
20	ΤL		0.1	24.0	2.0	2.3	60.7	9.7	1.2	73.6
		TG	0.2	28. 1	2.2	3.5	63.0	2.9	< 0.1	68. 1
25	ΤL		< 0.1	25.1	2.0	3.3	63.7	6.0	< 0.1	68. 6
		TG	0.1	26.6	1.8	3.5	64.9	3.0	< 0.1	69.7
30	ΤL		0.1	30.0	2.7	3.3	57.1	6.7	< 0.1	66. 5
		TG	0.5	36.2	2.6	3, 7	54.9	1.9	< 0.1	59.4

Analytical methods were as in Table 2.

Table 10.	Fatty	acid	compositions	of	total	lipid	and	triglyceride	of	L.	starkeyi
gro	own un	der d	ifferent growth	ı t	emper	ature.					

Lipid analyzed	C ₁₄ : 0	C _{16:0}			ompositio C _{18:1} (` '	Total unsaturated fatty acid	ě
Total lipid	0.2	29. 4	3. 1	2. 7	57.6	7.0	67.8	
Standard deviation	0.1	2.7	0.5	0.7	3.8	0.6	3. 5	
Triglyceride	0.3	37.5	2.5	2.5	53. 2	3. 6	59. 2	
Standard deviation	0.2	5.2	0.6	0.7	5.3	1.8	5. 5	

を制限しても、同じ変化が観察された。この結果から、 菌体が利用できる酸素量が蓄積脂質の脂肪酸炭素鎖と、 不飽和度の双方に影響を与えていることがわかった (Table 8).

培養温度 Table 9 に示したように、培養温度を 15° C、 20° Cにすると、TL 中に他の培養系では検出されない $C_{18:3}$ があらわれた。またそれに伴ってTL 中の $C_{18:2}$ が増大し、 $C_{16:0}$ が減少した。TG中には $C_{18:3}$ は検出されなかったが、培養温度が 20° C、 25° Cでは $C_{18:1}$ が増大し、 15° Cでは $C_{18:2}$ が増大した。微生物中の脂肪酸は、膜系の流動性を一定に保つために培養温度が低下するにつれて不飽和脂肪酸が増大するといわれている 9° 蓄積脂質の TGでも同じ理由によって不飽和脂肪酸が増大すると考えられる。

Table 2 から Table 9 までを通して, 共通事項としてまとめられる結果を整理すると以下の 4 項になる.

- 1) TL, TG 共に主要脂肪酸は C_{16:0} および C_{18:1}である.
- 2) $C_{18;2}$ は TL に多くなることがあっても,T G に多くなるのは稀である.
- 3) TL で $C_{18;2}$ が多くなったときは $C_{18:1}$ が 減少する.
- 4) TG で C_{16:0} がふえたときは, C_{18:1} が減少 する.

Table 2 からTable 9 の各表中で*印で示した

標準培養系から得た分析値全22組から, 脂肪酸組成 平均値と標準偏差を計算して Table 10 を作った 全脂質の脂肪酸組成をトリグリセリドのそれと比較 ると、パルミチン酸が少く、オレイン酸とリノール がふえている. 脂肪酸組成の標準偏差についてくら ると、全脂質のそれが、トリグリセリドのそれより さい. 分析に供した菌体は定常期初期のものではあ が、実験の進行上、生育時期を厳密に一定にして集 することはできず、多くは培養経過時間を基準にし 分析用試料菌体を得た. それゆえ. 個々の試料につ てみれば、生育時期にずれがあったとみるべきである 一方, Table 6 の結果は、菌体中に蓄積が開始さ た直後と、蓄積時間が充分に経過してからのトリグ セリド中の脂肪酸組成には,他の生理的要因以上に きな差があった. したがって、トリグリセリドの脂 酸組成におけるより大きな標準偏差は、試料として いた菌体の生育時期のずれに依存すると考えられる

L. starkeyi の脂質蓄積量は培養条件,特に培組成によって大きく変化するが 15)蓄積された Tの脂肪酸組成には大きな変化がなかった.したがて,L. starkeyi を使って不飽和脂肪酸含量の高TG が生産できる可能性は,現在までのところ低い

要 旨

油脂酵母の一種 Lipomyces starkeyi IAM 47 を培地成分濃度, pH, 通気量, 温度などの生理条件を変化させて培養し, 定常期初期の全菌体脂(TL)及びトリグリセリド(TG)の脂肪酸組成

比較した、TL, TG 共に主要構成脂肪酸はパルミチン酸($C_{18:0}$)、オレイン酸($C_{18:1}$)であった、培地のカリウムイオン濃度を通常の10分の1 にしたり、塩素イオン濃度を通常の100倍にするなど、培地組成を著しく変更すると、主として TL 中にリノール酸($C_{18:2}$)が増大した、しかし、同じ条件では、TG 中のリノール酸含量は TL のそれほどには増大しなかった。菌体を 15° C、 20° Cで培養したときに限って、TL 中にリノレン酸($C_{18:3}$)が検出された、この条件下で TG 中にはリノール酸がわずかに増大した、これらの結果から、本菌では生育の生理的条件を変化させても、菌体内に蓄積される TGの主要構成脂肪酸を多価不飽和脂肪酸にすることは困難と考えられた。

文 献

- 1)高山:工業用微生物・酵母,微生物と発酵生産, (鮫島,奈良), P.11,共立出版(1979).
- 2) 本江: 微生物による油脂の生産, 微生物工業, (朝井), P.451, 朝倉書店(1956).
- Ratledge, C.: Microbial Production of Oils and Fats, Food from Waste, (Birch, G. G., Parker, K. J., Worgan, J. T.),
 Applied Science Publ., London (1976).
- 4) 古屋, 荒木: 代謝制御発酵, 微生物と発酵生産, (鮫島, 奈良), P.92, 共立出版 (1979).

- Uzuka, Y., Naganuma, T., Tanaka, K., Odagiri, Y.: J. Gen. Appl. Microbiol., 20, 197 (1974).
- 6) Starkey, R. L. : *J. Bacteriol.*, **51**, 33 (1946).
- 7) 長沼, 兎束, 田中, 古賀: 農化, 49, 335 (1975).
- Uzuka, Y., Kanamori, T., Koga, T., Tanaka, K., Naganuma, T. : J. Gen. Appl, Microbiol., 21, 157 (1975).
- 9) Hunter, K., Rose, A. H.: Yeast lipids and membranes, The Yeasts, (Rose, A.., Harrison, J. S.) Vol. II, 211, Academic Press, London and New York (1971).
- 10) 是永, 長沼, 兎束, 田中:農化, 50,9 (1976).
- 11) 長沼, 兎束, 田中:農化,投稿中.
- 12) 今井, 坂上:脂質の生化学, 307, 朝倉書店 (1973).
- 13) 大西: 耐塩酵母の発酵生産物, 好塩微生物, (増井, 大西, 畝本), 301, 医歯薬出版 (1979).
- 14) Uzuka, Y., Naganuma, T., Tanaka, K. : J. Gen. Appl. Microbiol., 20, 277 (1974).
- 15) 兎束:油脂資源としての酵母,酵母の利用と開発, (秋山),171,学会出版センター(1979).

(昭和58 • 9 • 16受付)